Search results
Results from the WOW.Com Content Network
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
As an example, the function argument in the recursive expression for the factorial function below will always decrease by 1; by the well-ordering property of natural numbers, the argument will eventually reach 1 and the recursion will terminate.
The eval() vs. exec() built-in functions (in Python 2, exec is a statement); the former is for expressions, the latter is for statements; Statements cannot be a part of an expression—so list and other comprehensions or lambda expressions, all being expressions, cannot contain statements.
A function can be represented as a set of ordered pairs of argument and corresponding result values. For example, the set {(0,1), (4,3)} denotes a function with result 1 for argument 0, result 3 for the argument 4, and undefined otherwise. Consider for example the factorial function, which might be defined recursively as:
A built-in function, or builtin function, or intrinsic function, is a function for which the compiler generates code at compile time or provides in a way other than for other functions. [23] A built-in function does not need to be defined like other functions since it is built in to the programming language. [24]
A variety of libraries are directly accessible from OCaml. For example, OCaml has a built-in library for arbitrary-precision arithmetic. As the factorial function grows very rapidly, it quickly overflows machine-precision numbers (typically 32- or 64-bits). Thus, factorial is a suitable candidate for arbitrary-precision arithmetic.