enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron star - Wikipedia

    en.wikipedia.org/wiki/Neutron_star

    A neutron star is so dense that one teaspoon (5 milliliters) of its material would have a mass over 5.5 × 10 12 kg, about 900 times the mass of the Great Pyramid of Giza. [b] The entire mass of the Earth at neutron star density would fit into a sphere 305 m in diameter, about the size of the Arecibo Telescope.

  3. Habitability of neutron star systems - Wikipedia

    en.wikipedia.org/wiki/Habitability_of_neutron...

    The habitability of neutron star systems is the potential of planets and moons orbiting a neutron star to provide suitable habitats for life. [1] Of the roughly 3000 neutron stars known, only a handful have sub-stellar companions. The most famous of these are the low-mass planets around the millisecond pulsar PSR B1257+12.

  4. Neutron Star Interior Composition Explorer - Wikipedia

    en.wikipedia.org/wiki/Neutron_star_Interior...

    The Neutron Star Interior Composition ExploreR (NICER) is a NASA telescope on the International Space Station, designed and dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear physics environments embodied by neutron stars, exploring the exotic states of matter where density and pressure are higher than in atomic nuclei.

  5. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Neutron star mergers are a recently discovered major source of elements produced in the r-process. When two neutron stars collide, a significant amount of neutron-rich matter may be ejected which then quickly forms heavy elements. Cosmic ray spallation is a process wherein cosmic rays impact nuclei and fragment them.

  6. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    Further advances were made, especially to nucleosynthesis by neutron capture of the elements heavier than iron, by Margaret and Geoffrey Burbidge, William Alfred Fowler and Fred Hoyle in their famous 1957 B 2 FH paper, [3] which became one of the most heavily cited papers in astrophysics history. Stars evolve because of changes in their ...

  7. Scientists identify neutron star born out of supernova seen ...

    www.aol.com/news/scientists-identify-neutron...

    Dust comprising more than 200,000 times Earth's mass formed as debris after the explosion, making the area around the resulting neutron star too opaque to be studied using telescopes focused on ...

  8. List of neutron stars - Wikipedia

    en.wikipedia.org/wiki/List_of_Neutron_stars

    Neutron stars are the collapsed cores of supergiant stars. [1] They are created as a result of supernovas and gravitational collapse, [2] and are the second-smallest and densest class of stellar objects. [3] In the cores of these stars, protons and electrons combine to form neutrons. [2] Neutron stars can be classified as pulsars if they are ...

  9. Huge energetic flare from magnetic neutron star detected - AOL

    www.aol.com/news/huge-energetic-flare-magnetic...

    The main trait that sets magnetars apart from other neutron stars is a magnetic field 1,000 to 10,000 times stronger than an ordinary neutron star's magnetism and a trillion times that of the sun.