enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().

  3. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  4. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    When learning a linear function , characterized by an unknown vector such that () =, one can add the -norm of the vector to the loss expression in order to prefer solutions with smaller norms. Tikhonov regularization is one of the most common forms.

  5. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  6. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    The FixNorm method divides the output vectors from a transformer by their L2 norms, then multiplies by a learned parameter . The ScaleNorm replaces all LayerNorms inside a transformer by division with L2 norm, then multiplying by a learned parameter g ′ {\displaystyle g'} (shared by all ScaleNorm modules of a transformer).

  7. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    For example, the , norm is used in multi-task learning to group features across tasks, such that all the elements in a given row of the coefficient matrix can be forced to zero as a group. [6] The grouping effect is achieved by taking the ℓ 2 {\displaystyle \ell ^{2}} -norm of each row, and then taking the total penalty to be the sum of these ...

  8. Schatten norm - Wikipedia

    en.wikipedia.org/wiki/Schatten_norm

    For (,) the function ‖ ‖ is an example of a quasinorm. An operator which has a finite Schatten norm is called a Schatten class operator and the space of such operators is denoted by S p ( H 1 , H 2 ) {\displaystyle S_{p}(H_{1},H_{2})} .

  9. Dual norm - Wikipedia

    en.wikipedia.org/wiki/Dual_norm

    The Frobenius norm defined by ‖ ‖ = = = | | = ⁡ = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...