Search results
Results from the WOW.Com Content Network
Chiral molecules will usually have a stereogenic element from which chirality arises. The most common type of stereogenic element is a stereogenic center, or stereocenter. In the case of organic compounds, stereocenters most frequently take the form of a carbon atom with four distinct (different) groups attached to it in a tetrahedral geometry.
A chirality center (chiral center) is a type of stereocenter. A chirality center is defined as an atom holding a set of four different ligands (atoms or groups of atoms) in a spatial arrangement which is non-superposable on its mirror image. Chirality centers must be sp 3 hybridized, meaning that a chirality center can only have single bonds. [5]
Chirality (/ k aɪ ˈ r æ l ɪ t i /) is a property of asymmetry important in several branches of science. The word chirality is derived from the Greek χείρ (kheir), "hand", a familiar chiral object. An object or a system is chiral if it is distinguishable from its mirror image; that is, it cannot be superposed (not to be confused with ...
Drugs that exhibit handedness are referred to as chiral drugs. Chiral drugs that are equimolar (1:1) mixture of enantiomers are called racemic drugs and these are obviously devoid of optical rotation. The most commonly encountered stereogenic unit, [2] that confers chirality to drug molecules are stereogenic center. Stereogenic center can be ...
R-S isomerism of thalidomide. Chiral center marked with a star(*). Hydrogen (not drawn) is projecting behind the chiral centre. Enantiomers are molecules having one or more chiral centres that are mirror images of each other. [2] Chiral centres are designated R or S. If the 3 groups projecting towards you are arranged clockwise from highest ...
Molecules that cannot be superimposed on their own mirror image are said to be chiral; as the asymmetric carbon is the center of this chirality, it is also known as a chiral carbon. As an example, malic acid (HOOC−CH 2 −CH(OH)−COOH) has 4 carbon atoms but just one of them is asymmetric. The asymmetric carbon atom, bolded in the formula ...
are arranged around the chiral center carbon atom. With the hydrogen atom away from the viewer, if the arrangement of the CO→R→N groups around the carbon atom as center is counter-clockwise, then it is the L form. [14] If the arrangement is clockwise, it is the D form. As usual, if the molecule itself is oriented differently, for example ...
A chirality center is also called a chiral center [16] [17] [18] or an asymmetric center. [19] Some sources use the terms stereocenter , stereogenic center , stereogenic atom or stereogen to refer exclusively to a chirality center, [ 16 ] [ 18 ] [ 20 ] while others use the terms more broadly to refer also to centers that result in diastereomers ...