Search results
Results from the WOW.Com Content Network
In quantum computing, a qubit (/ ˈ k juː b ɪ t /) or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system , one of the simplest quantum systems displaying the peculiarity of quantum mechanics.
Arbitrary single-qubit phase shift gates () are natively available for transmon quantum processors through timing of microwave control pulses. [13] It can be explained in terms of change of frame. [14] [15] As with any single qubit gate one can build a controlled version of the phase shift gate.
Neuromorphic quantum computing (abbreviated as ‘n.quantum computing’) is an unconventional computing type of computing that uses neuromorphic computing to perform quantum operations. It was suggested that quantum algorithms, which are algorithms that run on a realistic model of quantum computation, can be computed equally efficiently with ...
An n-qubit (reversible) quantum gate is a unitary mapping U from the space H QB(n) of n-qubit registers onto itself. Typically, we are only interested in gates for small values of n . A reversible n -bit classical logic gate gives rise to a reversible n -bit quantum gate as follows: to each reversible n -bit logic gate f corresponds a quantum ...
A logical qubit specifies how a single qubit should behave in a quantum algorithm, subject to quantum logic operations which can be built out of quantum logic gates. However, issues in current technologies preclude single two-state quantum systems , which can be used as physical qubits, from reliably encoding and retaining this information for ...
Common quantum logic gates by name (including abbreviation), circuit form(s) and the corresponding unitary matrices. In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits.
International Business Machines Corp on Wednesday said it launched its most powerful quantum computer to date called the Osprey, a 433-qubit machine that has three times the number of qubits than ...
Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published physical qubit numbers do not reflect the performance levels of the processor. This is instead achieved through the number of logical qubits or benchmarking metrics such as quantum volume , randomized benchmarking or circuit ...