Search results
Results from the WOW.Com Content Network
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Logistic activation function. The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights.
In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable. [1]
This extended view allows the application of Bayesian techniques to SVMs, such as flexible feature modeling, automatic hyperparameter tuning, and predictive uncertainty quantification. Recently, a scalable version of the Bayesian SVM was developed by Florian Wenzel , enabling the application of Bayesian SVMs to big data . [ 44 ]
A conceptually simple extension of stochastic gradient descent makes the learning rate a decreasing function η t of the iteration number t, giving a learning rate schedule, so that the first iterations cause large changes in the parameters, while the later ones do only fine-tuning.
It was difficult to train and required careful hyperparameter tuning and a "warm-up" in learning rate, where it starts small and gradually increases. The pre-LN convention, proposed several times in 2018, [ 59 ] was found to be easier to train, requiring no warm-up, leading to faster convergence.