enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closed-loop controller - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_controller

    A block diagram of a PID controller in a feedback loop, r(t) is the desired process value or "set point", and y(t) is the measured process value. A proportional–integral–derivative controller (PID controller) is a control loop feedback mechanism control technique widely used in control systems.

  3. Closed-loop transfer function - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_transfer_function

    An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below: The summing node and the G(s) and H(s) blocks can all be combined into one block, which would have the following transfer function: () = + ()

  4. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    A block diagram of a PID controller in a feedback loop. r(t) is the desired process variable (PV) or setpoint (SP), and y(t) is the measured PV. The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal ...

  5. Feedback linearization - Wikipedia

    en.wikipedia.org/wiki/Feedback_linearization

    Feedback linearization can be accomplished with systems that have relative degree less than . However, the normal form of the system will include zero dynamics (i.e., states that are not observable from the output of the system) that may be unstable. In practice, unstable dynamics may have deleterious effects on the system (e.g., it may be ...

  6. Full state feedback - Wikipedia

    en.wikipedia.org/wiki/Full_state_feedback

    Full state feedback (FSF), or pole placement, is a method employed in feedback control system theory to place the closed-loop poles of a plant in predetermined locations in the s-plane. [1] Placing poles is desirable because the location of the poles corresponds directly to the eigenvalues of the system, which control the characteristics of the ...

  7. Proportional control - Wikipedia

    en.wikipedia.org/wiki/Proportional_control

    Proportional control, in engineering and process control, is a type of linear feedback control system in which a correction is applied to the controlled variable, and the size of the correction is proportional to the difference between the desired value (setpoint, SP) and the measured value (process variable, PV).

  8. Barkhausen stability criterion - Wikipedia

    en.wikipedia.org/wiki/Barkhausen_stability_criterion

    Block diagram of a feedback oscillator circuit to which the Barkhausen criterion applies. It consists of an amplifying element A whose output v o is fed back into its input v f through a feedback network β(jω). To find the loop gain, the feedback loop is considered broken at some point and the output v o for a given input v i is calculated:

  9. Loop gain - Wikipedia

    en.wikipedia.org/wiki/Loop_gain

    In electronics and control system theory, loop gain is the sum of the gain, expressed as a ratio or in decibels, around a feedback loop.Feedback loops are widely used in electronics in amplifiers and oscillators, and more generally in both electronic and nonelectronic industrial control systems to control industrial plant and equipment.