Search results
Results from the WOW.Com Content Network
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
For example, consider the following equation: + = If we multiply both sides by zero, we get, = This is true for all values of , so the solution set is all real numbers. But clearly not all real numbers are solutions to the original equation.
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1] For example, the constant π may be defined as the ratio of the length of a circle's circumference to ...
The rational number / is unknown, and the goal of the problem is to recover it from the given information. In order for the problem to be solvable, it is necessary to assume that the modulus m {\displaystyle m} is sufficiently large relative to r {\displaystyle r} and s {\displaystyle s} .
The rational numbers (), algebraic numbers (), algebraic periods and exponential periods as subsets of the complex numbers ().In mathematics, specifically algebraic geometry, a period or algebraic period [1] is a complex number that can be expressed as an integral of an algebraic function over an algebraic domain.
If a dense rational-distance set exists, any straight-line drawing of a planar graph could be perturbed by a small amount (without introducing crossings) to use points from this set as its vertices, and then scaled to make the distances integers. However, like the Erdős–Ulam problem, Harborth's conjecture remains unproven.