Search results
Results from the WOW.Com Content Network
The following outline is provided as an overview of and topical guide to cryptography: Cryptography (or cryptology) – practice and study of hiding information. Modern cryptography intersects the disciplines of mathematics, computer science, and engineering. Applications of cryptography include ATM cards, computer passwords, and electronic ...
This concept is widely embraced by cryptographers, in contrast to security through obscurity, which is not. Kerckhoffs's principle was phrased by American mathematician Claude Shannon as "the enemy knows the system", [ 1 ] i.e., "one ought to design systems under the assumption that the enemy will immediately gain full familiarity with them".
Cryptography, or cryptology (from Ancient Greek: κρυπτός, romanized: kryptós "hidden, secret"; and γράφειν graphein, "to write", or -λογία-logia, "study", respectively [1]), is the practice and study of techniques for secure communication in the presence of adversarial behavior. [2]
Historically, various forms of encryption have been used to aid in cryptography. Early encryption techniques were often used in military messaging. Since then, new techniques have emerged and become commonplace in all areas of modern computing. [1] Modern encryption schemes use the concepts of public-key and symmetric-key. [1]
A third class of information theory codes are cryptographic algorithms (both codes and ciphers). Concepts, methods and results from coding theory and information theory are widely used in cryptography and cryptanalysis, such as the unit ban. [citation needed]
In cryptography, confusion and diffusion are two properties of a secure cipher identified by Claude Shannon in his 1945 classified report A Mathematical Theory of Cryptography. [1] These properties, when present, work together to thwart the application of statistics, and other methods of cryptanalysis.
Cryptanalysis has coevolved together with cryptography, and the contest can be traced through the history of cryptography—new ciphers being designed to replace old broken designs, and new cryptanalytic techniques invented to crack the improved schemes. In practice, they are viewed as two sides of the same coin: secure cryptography requires ...
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).