Search results
Results from the WOW.Com Content Network
Magnetic field induction along the axis crossing the center of coils; z = 0 is the point in the middle of the distance between coils Contours showing the magnitude of the magnetic field near a coil pair, with one coil at top and the other at bottom.
A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor.
The advantage of using the coil shape is that it increases the strength of the magnetic field produced by a given current. The magnetic fields generated by the separate turns of wire all pass through the center of the coil and add to produce a strong field there. [3] The greater the number of turns of wire, the stronger the field produced.
The magnetic field lines of a current-carrying loop of wire pass through the center of the loop, concentrating the field there The magnetic field generated by passing a current through a coil. An electric current flowing in a wire creates a magnetic field around the wire, due to Ampere's law (see drawing of wire with magnetic field).
A magnetic field (sometimes called B-field [1]) is a physical field that describes the magnetic influence on moving electric charges, electric currents, [2]: ch1 [3] and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field.
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.
The magnetic field lines encircle the current-carrying wire. The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses. The strength of the field is directly proportional to the magnitude of the current.
There are different mathematical ways of representing the electromagnetic field. The first one views the electric and magnetic fields as three-dimensional vector fields. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates.