Search results
Results from the WOW.Com Content Network
A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters
Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...
Standard model-based clustering methods include more parsimonious models based on the eigenvalue decomposition of the covariance matrices, that provide a balance between overfitting and fidelity to the data. One prominent method is known as Gaussian mixture models (using the expectation-maximization algorithm).
In statistics, the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred.
It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem. [2] EM clustering of Old Faithful eruption data. The random initial model (which, due to the different scales of the axes, appears to be two very flat and wide ellipses) is fit to the observed data.
Regardless of precise definition, the terminology is constitutional because a generative model can be used to "generate" random instances , either of an observation and target (,), or of an observation x given a target value y, [2] while a discriminative model or discriminative classifier (without a model) can be used to "discriminate" the ...
In statistics and data mining, X-means clustering is a variation of k-means clustering that refines cluster assignments by repeatedly attempting subdivision, and keeping the best resulting splits, until a criterion such as the Akaike information criterion (AIC) or Bayesian information criterion (BIC) is reached.
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.