enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    Push-Pop(heap: List<T>, item: T) -> T: if heap is not empty and heap[1] > item then: // < if min heap swap heap[1] and item _downheap(heap starting from index 1) return item A similar function can be defined for popping and then inserting, which in Python is called "heapreplace":

  3. Heap (data structure) - Wikipedia

    en.wikipedia.org/wiki/Heap_(data_structure)

    Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.

  4. Min-max heap - Wikipedia

    en.wikipedia.org/wiki/Min-max_heap

    function FLOYD-BUILD-HEAP(h): for each index i from ⌊ / ⌋ down to 1 do: push-down(h, i) return h In this function, h is the initial array, whose elements may not be ordered according to the min-max heap property.

  5. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    The height of a node is the length of the longest downward path to a leaf from that node. The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and ...

  6. Heapsort - Wikipedia

    en.wikipedia.org/wiki/Heapsort

    procedure heapsort(a, count) is input: an unordered array a of length count (Build the heap in array a so that largest value is at the root) heapify(a, count) (The following loop maintains the invariants that a[0:end−1] is a heap, and every element a[end:count−1] beyond end is greater than everything before it, i.e. a[end:count−1] is in ...

  7. m-ary tree - Wikipedia

    en.wikipedia.org/wiki/M-ary_tree

    For an m-ary tree with height h, the upper bound for the maximum number of leaves is . The height h of an m-ary tree does not include the root node, with a tree containing only a root node having a height of 0. The height of a tree is equal to the maximum depth D of any node in the tree.

  8. Skew heap - Wikipedia

    en.wikipedia.org/wiki/Skew_heap

    A skew heap (or self-adjusting heap) is a heap data structure implemented as a binary tree. Skew heaps are advantageous because of their ability to merge more quickly than binary heaps. In contrast with binary heaps, there are no structural constraints, so there is no guarantee that the height of the tree is logarithmic. Only two conditions ...

  9. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.