Search results
Results from the WOW.Com Content Network
Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the Fibonacci Quarterly. Applications of Fibonacci numbers include computer algorithms such as the Fibonacci search technique and the Fibonacci heap data structure , and graphs called Fibonacci cubes used for ...
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.
In reading Liber Abaci, it is helpful to understand Fibonacci's notation for rational numbers, a notation that is intermediate in form between the Egyptian fractions commonly used until that time and the vulgar fractions still in use today. [12] Fibonacci's notation differs from modern fraction notation in three key ways:
The Fibonacci numbers are a sequence of integers, typically starting with 0, 1 and continuing 1, 2, 3, 5, 8, 13, ..., each new number being the sum of the previous two. The Fibonacci numbers, often presented in conjunction with the golden ratio, are a popular theme in culture. They have been mentioned in novels, films, television shows, and songs.
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47.
A digit sequence with rank r may be formed either by adding the digit 2 to a sequence with rank r − 2, or by adding the digit 1 to a sequence with rank r − 1.If f is the function that maps r to the number of different digit sequences of that rank, therefore, f satisfies the recurrence relation f (r) = f (r − 2) + f (r − 1) defining the Fibonacci numbers, but with slightly different ...
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .
Leonardo Fibonacci brought this system to Europe. His book Liber Abaci introduced Modus Indorum (the method of the Indians), today known as Hindu–Arabic numeral system or base-10 positional notation, the use of zero, and the decimal place system to the Latin world. The numeral system came to be called "Arabic" by the Europeans.