enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer-valued function - Wikipedia

    en.wikipedia.org/wiki/Integer-valued_function

    In mathematics, an integer-valued function is a function whose values are integers.In other words, it is a function that assigns an integer to each member of its domain.. The floor and ceiling functions are examples of integer-valued functions of a real variable, but on real numbers and, generally, on (non-disconnected) topological spaces integer-valued functions are not especially useful.

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...

  4. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]

  5. Condition number - Wikipedia

    en.wikipedia.org/wiki/Condition_number

    Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.

  6. Multiply–accumulate operation - Wikipedia

    en.wikipedia.org/wiki/Multiply–accumulate...

    Newton's method for evaluating functions (from the inverse function) Convolutions and artificial neural networks; Multiplication in double-double arithmetic; Fused multiply–add can usually be relied on to give more accurate results. However, William Kahan has pointed out that it can give problems if used unthinkingly. [8]

  7. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary precision arithmetic is also used to compute fundamental mathematical constants such as π to millions or more digits and to analyze the properties of the digit strings [8] or more generally to investigate the precise behaviour of functions such as the Riemann zeta function where certain questions are difficult to explore via ...

  8. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    The Euclidean method was first introduced in Efficient exponentiation using precomputation and vector addition chains by P.D Rooij. This method for computing in group G, where n is a natural integer, whose algorithm is given below, is using the following equality recursively:

  9. Elliptic curve point multiplication - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_point...

    Given a curve, E, defined by some equation in a finite field (such as E: y 2 = x 3 + ax + b), point multiplication is defined as the repeated addition of a point along that curve. Denote as nP = P + P + P + … + P for some scalar (integer) n and a point P = (x, y) that lies on the curve, E. This type of curve is known as a Weierstrass curve.