Search results
Results from the WOW.Com Content Network
Signal averaging is a signal processing technique applied in the time domain, intended to increase the strength of a signal relative to noise that is obscuring it. By averaging a set of replicate measurements, the signal-to-noise ratio (SNR) will be increased, ideally in proportion to the square root of the number of measurements.
If the noise has expected value of zero, as is common, the denominator is its variance, the square of its standard deviation σ N. The signal and the noise must be measured the same way, for example as voltages across the same impedance. Their root mean squares can alternatively be used according to:
Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception. [1] This is achieved by combining elements in an antenna array in such a way that signals at particular angles experience constructive interference while others experience destructive interference.
A typical noise ordinance sets forth clear definitions of acoustic nomenclature and defines categories of noise generation; then numerical standards are established, so that enforcement personnel can take the necessary steps of warnings, fines or other municipal police power to rectify unacceptable noise generation.
It computes a windowed periodogram of each one, and computes an array average, i.e. an array where each element is an average of the corresponding elements of all the periodograms. For stationary processes, this reduces the noise variance of each element by approximately a factor equal to the reciprocal of the number of periodograms.
The Fano factor can be viewed as a kind of noise-to-signal ratio; it is a measure of the reliability with which the waiting time random variable can be estimated after several random events. For a Poisson counting process , the variance in the count equals the mean count, so F = 1 {\displaystyle F=1} .
In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR [1]) (also known as the signal-to-noise-plus-interference ratio (SNIR) [2]) is a quantity used to give theoretical upper bounds on channel capacity (or the rate of information transfer) in wireless communication systems such as networks.
The NRQZ includes portions of West Virginia and Virginia and a small part of Maryland. The National Radio Quiet Zone (NRQZ) is a large area of land in the United States designated as a radio quiet zone, in which radio transmissions are restricted by law to facilitate scientific research and the gathering of military intelligence.