enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.

  3. Category of rings - Wikipedia

    en.wikipedia.org/wiki/Category_of_rings

    Examples of limits and colimits in Ring include: The ring of integers Z is an initial object in Ring. The zero ring is a terminal object in Ring. The product in Ring is given by the direct product of rings. This is just the cartesian product of the underlying sets with addition and multiplication defined component-wise.

  4. List object - Wikipedia

    en.wikipedia.org/wiki/List_object

    Let C be a category with finite products and a terminal object 1. A list object over an object A of C is: an object L A, a morphism o A : 1 → L A, and; a morphism s A : A × L A → L A; such that for any object B of C with maps b : 1 → B and t : A × B → B, there exists a unique f : L A → B such that the following diagram commutes:

  5. Preadditive category - Wikipedia

    en.wikipedia.org/wiki/Preadditive_category

    Note that because a nullary biproduct will be both terminal (a nullary product) and initial (a nullary coproduct), it will in fact be a zero object. Indeed, the term "zero object" originated in the study of preadditive categories like Ab , where the zero object is the zero group .

  6. Complete category - Wikipedia

    en.wikipedia.org/wiki/Complete_category

    The partially ordered class of all ordinal numbers is cocomplete but not complete (since it has no terminal object). A group, considered as a category with a single object, is complete if and only if it is trivial. A nontrivial group has pullbacks and pushouts, but not products, coproducts, equalizers, coequalizers, terminal objects, or initial ...

  7. Glossary of category theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_category_theory

    2. An object A in an ∞-category C is terminal if ⁡ (,) is contractible for every object B in C. thick subcategory A full subcategory of an abelian category is thick if it is closed under extensions. thin A thin category is a category where there is at most one morphism between any pair of objects. tiny

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Cone (category theory) - Wikipedia

    en.wikipedia.org/wiki/Cone_(category_theory)

    Define the diagonal functor Δ : CC J as follows: Δ(N) : J → C is the constant functor to N for all N in C. If F is a diagram of type J in C, the following statements are equivalent: ψ is a cone from N to F; ψ is a natural transformation from Δ(N) to F (N, ψ) is an object in the comma category (Δ ↓ F) The dual statements are also ...