enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.

  3. List object - Wikipedia

    en.wikipedia.org/wiki/List_object

    Let C be a category with finite products and a terminal object 1. A list object over an object A of C is: an object L A, a morphism o A : 1 → L A, and; a morphism s A : A × L A → L A; such that for any object B of C with maps b : 1 → B and t : A × B → B, there exists a unique f : L A → B such that the following diagram commutes:

  4. Equivalence of categories - Wikipedia

    en.wikipedia.org/wiki/Equivalence_of_categories

    As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If F : C → D is an equivalence, then the following statements are all true: the object c of C is an initial object (or terminal object, or zero object), if and only if Fc is an initial object (or terminal object, or zero object) of D

  5. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    If A is an object of C, then the functor from C to Set that sends X to Hom C (X,A) (the set of morphisms in C from X to A) is an example of such a functor. If C is a small category (i.e. the collection of its objects forms a set), then the contravariant functors from C to Set, together with natural transformations as morphisms, form a new ...

  6. Complete category - Wikipedia

    en.wikipedia.org/wiki/Complete_category

    For a category C, the following are all equivalent: C is finitely complete, C has equalizers and all finite products, C has equalizers, binary products, and a terminal object, C has pullbacks and a terminal object. The dual statements are also equivalent. A small category C is complete if and only if it is cocomplete. [1]

  7. Category of rings - Wikipedia

    en.wikipedia.org/wiki/Category_of_rings

    Examples of limits and colimits in Ring include: The ring of integers Z is an initial object in Ring. The zero ring is a terminal object in Ring. The product in Ring is given by the direct product of rings. This is just the cartesian product of the underlying sets with addition and multiplication defined component-wise.

  8. The best gifts for all kinds of dads in 2024 - AOL

    www.aol.com/lifestyle/best-gifts-dads-195639570.html

    Dads tend to have the most fun hobbies — fishing, golfing, bird watching, and, if you're my father-in-law, storytelling.He tends to be an incredibly fun person to shop for this time of year, but ...

  9. Preadditive category - Wikipedia

    en.wikipedia.org/wiki/Preadditive_category

    Note that because a nullary biproduct will be both terminal (a nullary product) and initial (a nullary coproduct), it will in fact be a zero object. Indeed, the term "zero object" originated in the study of preadditive categories like Ab , where the zero object is the zero group .