Search results
Results from the WOW.Com Content Network
The pyritohedron has a geometric degree of freedom with limiting cases of a cubic convex hull at one limit of collinear edges, and a rhombic dodecahedron as the other limit as 6 edges are degenerated to length zero. The regular dodecahedron represents a special intermediate case where all edges and angles are equal.
A regular skew dodecagon seen as zig-zagging edges of a hexagonal antiprism. A skew dodecagon is a skew polygon with 12 vertices and edges but not existing on the same plane. The interior of such a dodecagon is not generally defined. A skew zig-zag dodecagon has vertices alternating between two parallel planes.
Apollonius of Perga discovered the curious result that the ratio of volumes of these two shapes is the same as the ratio of their surface areas. [12] Both volumes have formulas involving the golden ratio but are taken to different powers. [1] Golden rectangle may also related to both regular icosahedron and regular dodecahedron. The regular ...
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices, and 120 edges.
Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star polygon with 10 sides; Hendecagram - star polygon with 11 sides; Dodecagram - star polygon with 12 sides; Apeirogon - generalized polygon with countably infinite set of sides
40 potential uniform polyhedra with degenerate vertex figures which have overlapping edges ... one for each regular polygon; the ones up to the 12-gonal cases are ...
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
The truncated dodecahedron is constructed from a regular dodecahedron by cutting all of its vertices off, a process known as truncation. [1] Alternatively, the truncated dodecahedron can be constructed by expansion: pushing away the edges of a regular dodecahedron, forming the pentagonal faces into decagonal faces, as well as the vertices into triangles. [2]