Search results
Results from the WOW.Com Content Network
A homotopy between two embeddings of the torus into : as "the surface of a doughnut" and as "the surface of a coffee mug".This is also an example of an isotopy.. Formally, a homotopy between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function: [,] from the product of the space X with the unit interval [0, 1] to Y such that ...
For example, the category of (reasonable) topological spaces has a structure of a model category where a weak equivalence is a weak homotopy equivalence, a cofibration a certain retract and a fibration a Serre fibration. [20] Another example is the category of non-negatively graded chain complexes over a fixed base ring. [21
The older definition of the homotopy category hTop, called the naive homotopy category [1] for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps f : X → Y are considered the same in the naive homotopy category if one can be continuously deformed to the other.
In the case of homotopy, the continuous deformation from one map to the other is of the essence, and it is also less restrictive, since none of the maps involved need to be one-to-one or onto. Homotopy does lead to a relation on spaces: homotopy equivalence. There is a name for the kind of deformation involved in visualizing a homeomorphism.
Homotopy#Isotopy, a continuous path of homeomorphisms connecting two given homeomorphisms is an isotopy of the two given homeomorphisms in homotopy; Regular isotopy of a link diagram, an equivalence relation in knot theory
Regular homotopy for immersions is similar to isotopy of embeddings: they are both restricted types of homotopies. Stated another way, two continuous functions f , g : M → N {\displaystyle f,g:M\to N} are homotopic if they represent points in the same path-components of the mapping space C ( M , N ) {\displaystyle C(M,N)} , given the compact ...
In other words, a function which is an isomorphism on () only implies that any elements of () that are homotopic in X are abstractly homotopic in A – the homotopy in A may be unrelated to the homotopy in X – while being n-connected (so also onto ()) means that (up to dimension n − 1) homotopies in X can be pushed into homotopies in A.
An example in topology is the composition of paths, where the identity and association conditions hold only up to reparameterization, and hence up to homotopy, which is the 2-isomorphism for this 2-category. These n-isomorphisms must well behave between hom-sets and expressing this is the difficulty in the definition of weak n-categories.