Search results
Results from the WOW.Com Content Network
Oblique shocks are often preferable in engineering applications when compared to normal shocks. This can be attributed to the fact that using one or a combination of oblique shock waves results in more favourable post-shock conditions (smaller increase in entropy, less stagnation pressure loss, etc.) when compared to utilizing a single normal ...
In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .
In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number , the post-shock Mach number can be calculated along with the pressure , density , temperature , and stagnation pressure ratios.
A schematic diagram of a shock wave situation with the density , velocity , and temperature indicated for each region.. The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave (deflagration or detonation) in a one-dimensional flow in ...
Shock polar in the pressure ratio-flow deflection angle plane for a Mach number of 1.8 and a specific heat ratio 1.4. The minimum angle, , which an oblique shock can have is the Mach angle = (/), where is the initial Mach number before the shock and the greatest angle corresponds to a normal shock.
A Mach wave is the weak limit of an oblique shock wave where time averages of flow quantities don't change (a normal shock is the other limit). If the size of the object moving at the speed of sound is near 0, then this domain of influence of the wave is called a Mach cone .
It occurs when a supersonic flow encounters a body, around which the necessary deviation angle of the flow is higher than the maximum achievable deviation angle for an attached oblique shock (see detachment criterion [1]). Then, the oblique shock transforms in a curved detached shock wave. As bow shocks occur for high flow deflection angles ...
The normal shock wave is a compression front normal to the flow direction. However, in a wide variety of physical situations, a compression wave inclined at an angle to the flow occurs. Such a wave is called an oblique shock. Indeed, all naturally occurring shocks in external flows are oblique. [9]