Search results
Results from the WOW.Com Content Network
The fact that light could be polarized was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization. Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time polarization was ...
The early presentation of the work to the Royal Society stimulated a bitter dispute between Newton and Robert Hooke over the "corpuscular" or particle theory of light, which prompted Newton to postpone publication of the work until after Hooke's death in 1703.
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
Newton hypothesized that hidden variables in the light particle determined which of the two paths a single photon would take. [44] Similarly, Einstein hoped for a more complete theory that would leave nothing to chance, beginning his separation [57] from quantum mechanics.
A translation of Newton's essay on light appears in The large scale structure of space-time, by Stephen Hawking and George F. R. Ellis. The fact that light could be polarized was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization.
It was only later that Young and Fresnel combined Newton's particle theory with Huygens' wave theory to explain how color arises from the spectrum of light. Newton arrived at his conclusion by passing the red color from one prism through a second prism and found the color unchanged.
Our understanding of the universe may be completely wrong. For premium support please call: 800-290-4726 more ways to reach us
[3] [4] [5] Thomas Young's experiment with light was part of classical physics long before the development of quantum mechanics and the concept of wave–particle duality. He believed it demonstrated that the Christiaan Huygens' wave theory of light was correct, and his experiment is sometimes referred to as Young's experiment [6] or Young's ...