Search results
Results from the WOW.Com Content Network
68 is a composite number; a square-prime, of the form (p 2, q) where q is a higher prime. It is the eighth of this form and the sixth of the form (2 2.q). 68 is a Perrin number. [1] It has an aliquot sum of 58 within an aliquot sequence of two composite numbers (68, 58,32,31,1,0) to the Prime in the 31-aliquot tree.
A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful. The Liouville function λ(n) is 1 if Ω(n) is even, and is -1 if Ω(n) is odd. The Möbius function μ(n) is 0 if n is not square-free. Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd.
The even numbers form an ideal in the ring of integers, [13] but the odd numbers do not—this is clear from the fact that the identity element for addition, zero, is an element of the even numbers only. An integer is even if it is congruent to 0 modulo this ideal, in other words if it is congruent to 0 modulo 2, and odd if it is congruent to 1 ...
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The appearance of this odd number is explained by a still more general result, known as the handshaking lemma: any graph has an even number of vertices of odd degree. [17] Finally, the even number of odd vertices is naturally explained by the degree sum formula. Sperner's lemma is a more advanced application of the same strategy.
If the number of digits is even, add the first and subtract the last digit from the rest. The result must be divisible by 11. 918,082: the number of digits is even (6) → 1808 + 9 − 2 = 1815: 81 + 1 − 5 = 77 = 7 × 11 If the number of digits is odd, subtract the first and last digit from the rest. The result must be divisible by 11.
The extended handle means they can view bugs from a safe distance, but the included magnifying glass allows them an even closer look. $15 at Amazon. Pokemon. Assorted Pokemon Cards (50 pieces)
1773 = number of words of length 5 over the alphabet {1,2,3,4,5} such that no two even numbers appear consecutively [411] ... 1782 = heptagonal number [68]