Search results
Results from the WOW.Com Content Network
The chemical potential of a reagent A is a function of the activity, {A} of that reagent. = + {} (where μ o A is the standard chemical potential). The definition of the Gibbs energy equation interacts with the fundamental thermodynamic relation to produce
Equilibrium chemistry is concerned with systems in chemical equilibrium.The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is ...
The thermodynamic equilibrium constant, K ⊖, for the equilibrium + can be defined [15] as = {} {} {} where {ML} is the activity of the chemical species ML etc. K ⊖ is dimensionless since activity is dimensionless. Activities of the products are placed in the numerator, activities of the reactants are placed in the denominator.
According to Arrhenius's original molecular definition, an acid is a substance that dissociates in aqueous solution, releasing the hydrogen ion H + (a proton): [5] + + The equilibrium constant for this dissociation reaction is known as a dissociation constant.
However, when the ionic strength is changed the measured equilibrium constant will also change, so there is a need to estimate individual (single ion) activity coefficients. Debye–Hückel theory provides a means to do this, but it is accurate only at very low concentrations. Hence the need for an extension to Debye–Hückel theory.
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
In chemistry, the common-ion effect refers to the decrease in solubility of an ionic precipitate by the addition to the solution of a soluble compound with an ion in common with the precipitate. [1] This behaviour is a consequence of Le Chatelier's principle for the equilibrium reaction of the ionic association / dissociation .