Search results
Results from the WOW.Com Content Network
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
modified_identifier_list «As «non_array_type««array_rank_specifier»» (multiple declarator); valid declaration statements are of the form Dim declarator_list, where, for the purpose of semantic analysis, to convert the declarator_list to a list of only single declarators:
The rest parameter must be the final named parameter in the function's parameter list. It will be assigned an Array containing any arguments passed to the function in excess of the other named parameters. In other words, it gets "the rest" of the arguments passed to the function (hence the name).
Thus, an array of numbers with 5 rows and 4 columns, hence 20 elements, is said to have dimension 2 in computing contexts, but represents a matrix that is said to be 4×5-dimensional. Also, the computer science meaning of "rank" conflicts with the notion of tensor rank , which is a generalization of the linear algebra concept of rank of a matrix .)
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
In mathematics and in computer programming, a variadic function is a function of indefinite arity, i.e., one which accepts a variable number of arguments. Support for variadic functions differs widely among programming languages. The term variadic is a neologism, dating back to 1936–1937. [1] The term was not widely used until the 1970s.