Search results
Results from the WOW.Com Content Network
In genetics and molecular biology, a corepressor is a molecule that represses the expression of genes. [1] In prokaryotes, corepressors are small molecules whereas in eukaryotes, corepressors are proteins. A corepressor does not directly bind to DNA, but instead indirectly regulates gene expression by binding to repressors.
In molecular biology and genetics, transcription coregulators are proteins that interact with transcription factors to either activate or repress the transcription of specific genes. [1] Transcription coregulators that activate gene transcription are referred to as coactivators while those that repress are known as corepressors .
For a specific example, dysregulation of CREB-binding protein (CBP)—which acts as a coactivator for numerous transcription factors within the central nervous system (CNS), reproductive system, thymus and kidneys—has been linked to Huntington's disease, leukaemia, Rubinstein-Taybi syndrome, neurodevelopmental disorders and deficits of the ...
The ability of nuclear receptors to alternate between activation and repression in response to specific molecular cues, is now known to be attributable in large part to a diverse group of cellular factors, collectively termed coregulators and including coactivators and corepressors.
Mechanism of class II nuclear receptor action. A class II nuclear receptor (NR), regardless of ligand-binding status, is located in the nucleus bound to DNA. For the purpose of illustration, the nuclear receptor shown here is the thyroid hormone receptor heterodimerized to the RXR. In the absence of ligand, the TR is bound to corepressor ...
Biological processes are those processes that are necessary for an organism to live and that shape its capacities for interacting with its environment. Biological processes are made of many chemical reactions or other events that are involved in the persistence and transformation of life forms.
In molecular biology, an inducer is a molecule that regulates gene expression. [1] An inducer functions in two ways; namely: By disabling repressors. The gene is expressed because an inducer binds to the repressor. The binding of the inducer to the repressor prevents the repressor from binding to the operator.
Another method of termination is the reaction between a lipid radical and a lipid peroxide, or the combination of two lipid peroxide molecules, resulting in stable nonreactive molecules. [ 4 ] [ 5 ] Reinforced lipids that become part of the membrane if consumed with heavy isotope diet also inhibit peroxidation.