Ad
related to: example of continuous function calculator with steps calculus
Search results
Results from the WOW.Com Content Network
the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.
As such, the step functions form an algebra over the real numbers. A step function takes only a finite number of values. If the intervals , for =,, …, in the above definition of the step function are disjoint and their union is the real line, then () = for all . The definite integral of a step function is a piecewise linear function.
If one wants to extend the natural functional calculus for polynomials on the spectrum of an element of a Banach algebra to a functional calculus for continuous functions (()) on the spectrum, it seems obvious to approximate a continuous function by polynomials according to the Stone-Weierstrass theorem, to insert the element into these polynomials and to show that this sequence of elements ...
Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.
The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each point in time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be ...
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
The contour integral of a complex function: is a generalization of the integral for real-valued functions. For continuous functions in the complex plane, the contour integral can be defined in analogy to the line integral by first defining the integral along a directed smooth curve in terms of an integral over a real valued parameter.
The Heine–Cantor theorem asserts that every continuous function on a compact set is uniformly continuous. In particular, if a function is continuous on a closed bounded interval of the real line, it is uniformly continuous on that interval. The Darboux integrability of continuous functions follows almost immediately from this theorem.
Ad
related to: example of continuous function calculator with steps calculus