Search results
Results from the WOW.Com Content Network
For example, a ligand with a nanomolar (nM) dissociation constant binds more tightly to a particular protein than a ligand with a micromolar (μM) dissociation constant. Sub-picomolar dissociation constants as a result of non-covalent binding interactions between two molecules are rare. Nevertheless, there are some important exceptions.
Kd is the equilibrium constant for dissociation. K A {\textstyle K_{A}} is defined so that ( K A ) n = K d = k d k a {\textstyle (K_{A})^{n}=K_{\rm {d}}={k_{\rm {d}} \over k_{\rm {a}}}} , this is also known as the microscopic dissociation constant and is the ligand concentration occupying half of the binding sites.
After equilibrium is reached each sample is measured by flowing it through the column (Figure 2). For 1:1 reversible binding Equilibrium Kd is defined as (1) K d ≡k off /k on =R*L/RL. the binding is reversible so conservation of mass can be written as (2) R T = R+RL (3) L T = L +RL. Where: K d = equilibrium dissociation constant
The affinity between protein and ligand is given by the equilibrium dissociation constant K d or the inverse of the association constant 1/K a (or binding constant 1/K b) that relates the concentrations of the complexed and uncomplexed species in solution. The dissociation constant is defined as K d = [] [] []
The binding constant, or affinity constant/association constant, is a special case of the equilibrium constant K, [1] and is the inverse of the dissociation constant. [2] It is associated with the binding and unbinding reaction of receptor (R) and ligand (L) molecules, which is formalized as: R + L ⇌ RL
K a is variously named a dissociation constant, [3] an acid ionization constant, [2]: 668 an acidity constant [1] or an ionization constant. [2]: 708 It serves as an indicator of the acid strength: stronger acids have a higher K a value (and a lower pK a value).
with an on-rate (k on) and off-rate (k off) related to the dissociation constant through K d =k off /k on. When the system equilibrates, [] [] = [] so that the average number of ligands bound to each receptor is given by
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is ...