Search results
Results from the WOW.Com Content Network
Categorical distribution, general model; Chi-squared test; Cochran–Armitage test for trend; Cochran–Mantel–Haenszel statistics; Correspondence analysis; Cronbach's alpha; Diagnostic odds ratio; G-test; Generalized estimating equations; Generalized linear models; Krichevsky–Trofimov estimator; Kuder–Richardson Formula 20; Linear ...
It does this by representing data as points in a low-dimensional Euclidean space. The procedure thus appears to be the counterpart of principal component analysis for categorical data. [citation needed] MCA can be viewed as an extension of simple correspondence analysis (CA) in that it is applicable to a large set of categorical variables.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
Correspondence analysis (CA) is a multivariate statistical technique proposed [1] by Herman Otto Hartley (Hirschfeld) [2] and later developed by Jean-Paul Benzécri. [3] It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data. In a similar manner to principal component analysis, it ...
The Cochran–Armitage test for trend, [1] [2] named for William Cochran and Peter Armitage, is used in categorical data analysis when the aim is to assess for the presence of an association between a variable with two categories and an ordinal variable with k categories.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Log-linear analysis is a technique used in statistics to examine the relationship between more than two categorical variables. The technique is used for both hypothesis testing and model building. In both these uses, models are tested to find the most parsimonious (i.e., least complex) model that best accounts for the variance in the observed ...
A simple, somewhat better computational approach relies on a gamma function or log-gamma function, but methods for accurate computation of hypergeometric and binomial probabilities remains an active research area. For stratified categorical data the Cochran–Mantel–Haenszel test must be used instead of Fisher's test.