Search results
Results from the WOW.Com Content Network
For example, to have a derived class with an overloaded function taking a double or an int, using the function taking an int from the base class, in C++, one would write: class B { public : void F ( int i ); }; class D : public B { public : using B :: F ; void F ( double d ); };
The "vtable" method developed in C++ and other early OO languages (where each class has an array of function pointers corresponding to that class's virtual functions) is nearly as fast as a static method call, requiring O(1) overhead and only one additional memory lookup even in the un-optimized case. However, the vtable method uses the ...
All logical operators exist in C and C++ and can be overloaded in C++, albeit the overloading of the logical AND and logical OR is discouraged, because as overloaded operators they behave as ordinary function calls, which means that both of their operands are evaluated, so they lose their well-used and expected short-circuit evaluation property.
The problem is that, while virtual functions are dispatched dynamically in C++, function overloading is done statically. The problem described above can be resolved by simulating double dispatch, for example by using a visitor pattern. Suppose the existing code is extended so that both SpaceShip and ApolloSpacecraft are given the function
The previous section notwithstanding, there are other ways in which ad hoc polymorphism can work out. Consider for example the Smalltalk language. In Smalltalk, the overloading is done at run time, as the methods ("function implementation") for each overloaded message ("overloaded function") are resolved when they are about to be executed.
Notice that the type of the result can be regarded as everything past the first supplied argument. This is a consequence of currying, which is made possible by Haskell's support for first-class functions; this function requires two inputs where one argument is supplied and the function is "curried" to produce a function for the argument not supplied.
Often the compiler selects the overload to call based on the type of the input arguments or it fails if the input arguments do not select an overload. Older and weakly-typed languages generally do not support overloading. Here is an example of overloading in C++, two functions Area that accept different types:
Examples are templates in C++, and generic programming in Fortran and other languages, in conjunction with function overloading (including operator overloading). Code is said to be monomorphised , with specific data types deduced and traced through the call graph , in order to instantiate specific versions of generic functions , and select ...