enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    If the edge length of a regular dodecahedron is , the radius of a circumscribed sphere (one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere (tangent to each of the regular dodecahedron's faces), and the midradius (one that touches the middle of each edge) are: [21] =, =, =. Given a regular dodecahedron ...

  3. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    In geometry, a dodecahedron (from Ancient Greek δωδεκάεδρον (dōdekáedron); from δώδεκα (dṓdeka) 'twelve' and ἕδρα (hédra) 'base, seat, face') or duodecahedron [1] is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid.

  4. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide. The dihedral angles for the ... Dodecahedron {5,3} (5.5.5)

  5. Angular defect - Wikipedia

    en.wikipedia.org/wiki/Angular_defect

    The defect of any of the vertices of a regular dodecahedron (in which three regular pentagons meet at each vertex) is 36°, or π/5 radians, or 1/10 of a circle. Each of the angles measures 108°; three of these meet at each vertex, so the defect is 360° − (108° + 108° + 108°) = 36°.

  6. 120-cell - Wikipedia

    en.wikipedia.org/wiki/120-cell

    Each dodecahedral cell of the 120-cell is diminished by removal of 4 of its 20 vertices, creating an irregular 16-point polyhedron called the tetrahedrally diminished dodecahedron because the 4 vertices removed formed a tetrahedron inscribed in the dodecahedron. Since the vertex figure of the dodecahedron is the triangle, each truncated vertex ...

  7. Small stellated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Small_stellated_dodecahedron

    The truncated small stellated dodecahedron can be considered a degenerate uniform polyhedron since edges and vertices coincide, but it is included for completeness. Visually, it looks like a regular dodecahedron on the surface, but it has 24 faces in overlapping pairs. The spikes are truncated until they reach the plane of the pentagram beneath ...

  8. Truncated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_dodecahedron

    The truncated dodecahedron is constructed from a regular dodecahedron by cutting all of its vertices off, a process known as truncation. [1] Alternatively, the truncated dodecahedron can be constructed by expansion: pushing away the edges of a regular dodecahedron, forming the pentagonal faces into decagonal faces, as well as the vertices into triangles. [2]

  9. Talk:Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Talk:Dodecahedron

    We also know that the dodecahedron has 12 sides, so a first attempt to a surface area formula for the dodecahedron is 12*5*L*a/2 = 6*5*L*a = 30*L*a; The apothem of the pentagon equals L*tan(54°)/2, so, if we replace this expression to a in the previous formula, we get 30*L*L*tan(54°)/2, which can be simplified to 15*L 2 *tan(54°).