Search results
Results from the WOW.Com Content Network
This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Analysis of single-cell sequencing presents many challenges, such as determining the best way to normalize the data. [8] Due to a new level of complications that arise from sequencing of both proteins and transcripts at a single-cell level, the developers of CITE-Seq and their collaborators are maintaining several tools to help with data analysis.
Single-cell DNA genome sequencing involves isolating a single cell, amplifying the whole genome or region of interest, constructing sequencing libraries, and then applying next-generation DNA sequencing (for example Illumina, Ion Torrent). Single-cell DNA sequencing has been widely applied in mammalian systems to study normal physiology and ...
Single-cell RNA sequencing (scRNA-Seq) provides the expression profiles of individual cells. Although it is not possible to obtain complete information on every RNA expressed by each cell, due to the small amount of material available, patterns of gene expression can be identified through gene clustering analyses. This can uncover the existence ...
Trajectory inference as implemented in Slingshot for (a) a simulated two-dimensional dataset and (b) a single-cell RNA-seq dataset of the olfactory epithelium.. Trajectory inference or pseudotemporal ordering is a computational technique used in single-cell transcriptomics to determine the pattern of a dynamic process experienced by cells and then arrange cells based on their progression ...
Fang et al. have also shown how there are T-ALL specific gain or loss of chromatin insulation, which alters the strength of TAD architecture of the genome, using in situ Hi-C. [79] Low-C has been used to map the chromatin structure of primary B cells of a diffuse large B-cell lymphoma patient and was used to find high chromosome structural ...
Early integration is a method that concatenates (by binding rows and columns) two or more omics datasets into a single data matrix. [19] [20] Some advantages of early integration are that the approach is simple, highly interpretable, and capable of capturing relationships between features from different modalities.