Search results
Results from the WOW.Com Content Network
Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .
The latter sort of properties are called invariants and studying them is the essence of geometry. Thales' theorem, named after Thales of Miletus states that if A, B, and C are points on a circle where the line AC is a diameter of the circle, then the angle ABC is a right angle. Cantor supposed that Thales proved his theorem by means of Euclid ...
A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6] A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8]
Japanese theorem for concyclic polygons (Euclidean geometry) Japanese theorem for concyclic quadrilaterals (Euclidean geometry) John ellipsoid ; Jordan curve theorem ; Jordan–Hölder theorem (group theory) Jordan–Schönflies theorem (geometric topology) Jordan–Schur theorem (group theory)
Theorems about quadrilaterals and circles (6 P) Pages in category "Theorems about quadrilaterals" The following 11 pages are in this category, out of 11 total.
The first of these theorems is the spherical analogue of a plane theorem, and the second theorem is its dual, that is, the result of interchanging great circles and their poles. [32] Kiper et al. [ 33 ] proved a converse of the theorem: If the summations of the opposite sides are equal in a spherical quadrilateral, then there exists an ...
The Japanese theorem for cyclic quadrilaterals [12] states that the incentres of the four triangles determined by the vertices of a cyclic quadrilateral taken three at a time form a rectangle. The British flag theorem states that with vertices denoted A , B , C , and D , for any point P on the same plane of a rectangle: [ 13 ]
Five color theorem; Five lemma; Fundamental theorem of arithmetic; Gauss–Markov theorem (brief pointer to proof) Gödel's incompleteness theorem. Gödel's first incompleteness theorem; Gödel's second incompleteness theorem; Goodstein's theorem; Green's theorem (to do) Green's theorem when D is a simple region; Heine–Borel theorem ...