enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Codomain - Wikipedia

    en.wikipedia.org/wiki/Codomain

    The term range is sometimes ambiguously used to refer to either the codomain or the image of a function. A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. [1] The set of all elements of the form f(x), where x ranges over the elements of the domain X, is ...

  3. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    Similarly, the inverse image (or preimage) of a given subset of the codomain is the set of all elements of that map to a member of . The image of the function f {\displaystyle f} is the set of all output values it may produce, that is, the image of X {\displaystyle X} .

  4. Range of a function - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_function

    Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function. In some cases the codomain and the image of a function are the same set; such a function is called surjective or onto.

  5. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    The image under f of an element x of the domain X is f(x). [6] If A is any subset of X, then the image of A under f, denoted f(A), is the subset of the codomain Y consisting of all images of elements of A, [6] that is, = {()}. The image of f is the image of the whole domain, that is, f(X). [17]

  6. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    For a function :, the set Y is called the codomain: the set to which all outputs must belong. The set of specific outputs the function assigns to elements of X is called its range or image. The image of f is a subset of Y, shown as the yellow oval in the accompanying diagram.

  7. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    The function is surjective, or onto, if each element of the codomain is mapped to by at least one element of the domain; that is, if the image and the codomain of the function are equal. A surjective function is a surjection. [1] Notationally:

  8. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...

  9. Injective function - Wikipedia

    en.wikipedia.org/wiki/Injective_function

    In other words, every element of the function's codomain is the image of at most one element of its domain. [2] The term one-to-one function must not be confused with one-to-one correspondence that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain.