Search results
Results from the WOW.Com Content Network
A Taylor series analysis of the upwind scheme discussed above will show that it is first-order accurate in space and time. Modified wavenumber analysis shows that the first-order upwind scheme introduces severe numerical diffusion /dissipation in the solution where large gradients exist due to necessity of high wavenumbers to represent sharp ...
The Riemannian connection or Levi-Civita connection [9] is perhaps most easily understood in terms of lifting vector fields, considered as first order differential operators acting on functions on the manifold, to differential operators on sections of the frame bundle. In the case of an embedded surface, this lift is very simply described in ...
In mathematics, an ordered pair, denoted (a, b), is a pair of objects in which their order is significant. The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a ...
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
Unlike first-order upwind scheme, the MacCormack does not introduce diffusive errors in the solution. However, it is known to introduce dispersive errors ( Gibbs phenomenon ) in the region where the gradient is high.
Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.
In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations.They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications.
Trapezoidal rule — second-order implicit method; Runge–Kutta methods — one of the two main classes of methods for initial-value problems Midpoint method — a second-order method with two stages; Heun's method — either a second-order method with two stages, or a third-order method with three stages