Search results
Results from the WOW.Com Content Network
The subspace V × {0} of V ⊕ W is isomorphic to V and is often identified with V; similarly for {0} × W and W. (See internal direct sum below.) With this identification, every element of V ⊕ W can be written in one and only one way as the sum of an element of V and an element of W. The dimension of V ⊕ W is equal to the sum of the ...
The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.
The binary operation, called vector addition or simply addition assigns to any two vectors v and w in V a third vector in V which is commonly written as v + w, and called the sum of these two vectors. The binary function, called scalar multiplication, assigns to any scalar a in F and any vector v in V another vector in V, which is denoted av ...
In particular, the direct sum of square matrices is a block diagonal matrix. The adjacency matrix of the union of disjoint graphs (or multigraphs) is the direct sum of their adjacency matrices. Any element in the direct sum of two vector spaces of matrices can be represented as a direct sum of two matrices. In general, the direct sum of n ...
A representation is called semisimple or completely reducible if it can be written as a direct sum of irreducible representations. This is analogous to the corresponding definition for a semisimple algebra. For the definition of the direct sum of representations please refer to the section on direct sums of representations.
If V is the direct sum of its weight spaces V = ⨁ λ ∈ h ∗ V λ {\displaystyle V=\bigoplus _{\lambda \in {\mathfrak {h}}^{*}}V_{\lambda }} then V is called a weight module ; this corresponds to there being a common eigenbasis (a basis of simultaneous eigenvectors) for all the represented elements of the algebra, i.e., to there being ...
(That is, if W is an invariant subspace, then there is another invariant subspace P such that V is the direct sum of W and P.) If is a finite-dimensional semisimple Lie algebra over a field of characteristic zero and V is finite-dimensional, then V is semisimple; this is Weyl's complete reducibility theorem. [4]
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.