Search results
Results from the WOW.Com Content Network
One reason for using FAME (fatty acid methyl esters) in biodiesel production, rather than free fatty acids, is to mitigate the potential corrosion they can cause to metals of engines, production facilities, and related infrastructure. While free fatty acids are only mildly acidic, over time they can lead to cumulative corrosion.
An example of an ester formation is the substitution reaction between a carboxylic acid (R−C(=O)−OH) and an alcohol (R'OH), forming an ester (R−C(=O)−O−R'), where R and R′ are organyl groups, or H in the case of esters of formic acid. Glycerides, which are fatty acid esters of glycerol, are important esters in biology, being one of ...
The most commonly used alcohol is methanol, producing fatty acid methyl esters (FAME). When ethanol is used fatty acid ethyl esters (FAEE) are created. Other alcohols used for the production of biodiesel include butanol and isopropanol. Fatty acid ethyl esters are biomarkers for the consumption of ethanol (alcoholic beverages). [1] [2] [3]
Fatty acids are mainly used in the production of soap, both for cosmetic purposes and, in the case of metallic soaps, as lubricants. Fatty acids are also converted, via their methyl esters, to fatty alcohols and fatty amines, which are precursors to surfactants, detergents, and lubricants. [17]
Hexanoic acid CH 3 (CH 2) 4 COOH C6:0 Enanthic acid: Heptanoic acid CH 3 (CH 2) 5 COOH C7:0 Caprylic acid: Octanoic acid CH 3 (CH 2) 6 COOH C8:0 Pelargonic acid: Nonanoic acid CH 3 (CH 2) 7 COOH C9:0 Capric acid: Decanoic acid CH 3 (CH 2) 8 COOH C10:0 Undecylic acid: Undecanoic acid CH 3 (CH 2) 9 COOH C11:0 Lauric acid: Dodecanoic acid CH 3 (CH ...
Cervonic acid (or docosahexaenoic acid) has 22 carbons, is found in fish oil, is a 4,7,10,13,16,19-hexa unsaturated fatty acid. In the human body its generation depends on consumption of omega 3 essential fatty acids (e.g., ALA or EPA), but the conversion process is inefficient. [ 22 ]
The fatty acid or fatty esters are susceptible to hydrogenation converts unsaturated fatty acids into saturated fatty acids. [1] The acids or esters can also be reduced to the fatty alcohols. For some applications, fatty acids are converted to fatty nitriles. Hydrogenated of these nitriles gives fatty amines, which have a variety of ...
Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. [1] Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile.