Search results
Results from the WOW.Com Content Network
Tetrahydrocannabinolic acid (THCA) synthase (full name Δ 1-tetrahydrocannabinolic acid synthase) is an enzyme responsible for catalyzing the formation of THCA from cannabigerolic acid (CBGA). THCA is the direct precursor of tetrahydrocannabinol (THC) , the principal psychoactive component of cannabis , which is produced from various strains of ...
Cannabinoids, including tetrahydrocannabinol (THC), the active drug in cannabis, can also be produced by bioengineered yeast, a process colloquially known as pharming. [1] In 2007, a research group reported the successful transgenic placement of a THCA synthase gene from Cannabis plant into the Pichia pastoris yeast, giving the yeast the ability to turn the precursor molecule cannabigerolic ...
Tetrahydrocannabinolic acid (THCA, 2-COOH-THC; conjugate base tetrahydrocannabinolate) is a precursor of tetrahydrocannabinol (THC), an active component of cannabis. [1]THCA is found in variable quantities in fresh, undried cannabis, but is progressively decarboxylated to THC with drying, and especially under intense heating such as when cannabis is smoked or cooked into cannabis edibles.
A 2022 pre-clinical study by researchers from the Oregon State University and Oregon Health & Science University found that CBGA (along with CBDA and THCA) could prevent infection by SARS-CoV-2. They found that CBGA was able to block infection by the reference strain (WA-1/2020), alpha variant (B.1.1.7) and beta variant (B.1.351) at micromolar ...
Next, CBGA is independently converted to either CBG, THCA, CBDA or CBCA by four separate synthase, FAD-dependent dehydrogenase enzymes. There is no evidence for enzymatic conversion of CBDA or CBD to THCA or THC.
Geranyl pyrophosphate and olivetolic acid react, catalysed by an enzyme to produce cannabigerolic acid, [42] which is cyclized by the enzyme THC acid synthase to give THCA. Over time, or when heated, THCA is decarboxylated, producing THC. The pathway for THCA biosynthesis is similar to that which produces the bitter acid humulone in hops.
CBD heated to 175, [13] or 250–300 °C may partially be converted into THC. [14] Even at room temperature, trace amounts of THC can be formed as a contaminant in CBD stored for long periods in the presence of moisture and carbon dioxide in the air, with storage under inert gas required to maintain analytically pure CBD.
THC acetate ester (THC-O or THCOA) can be synthesized from THC, [2] [3] or from THCA. The acetylation of THC does not change the properties of the compound to the same extent as with other acetate esters, as the parent compound (THC) is already highly lipophilic, but potency is nonetheless increased to some extent.