enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    Real gases are non-ideal gases whose molecules occupy space and have interactions; consequently, they do not adhere to the ideal gas law. To understand the behaviour of real gases, the following must be taken into account: compressibility effects; variable specific heat capacity; van der Waals forces; non-equilibrium thermodynamic effects;

  3. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    One way to write the van der Waals equation is: [8] [9] [10] = where is pressure, is temperature, and = / is molar volume. In addition is the Avogadro constant, is the volume, and is the number of molecules (the ratio / is a physical quantity with base unit mole (symbol mol) in the SI).

  4. Fugacity - Wikipedia

    en.wikipedia.org/wiki/Fugacity

    For an ideal gas, fugacity and pressure are equal, and so φ = 1. Taken at the same temperature and pressure, the difference between the molar Gibbs free energies of a real gas and the corresponding ideal gas is equal to RT ln φ. The fugacity is closely related to the thermodynamic activity. For a gas, the activity is simply the fugacity ...

  5. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    For a gas that is a mixture of two or more pure gases (air or natural gas, for example), the gas composition must be known before compressibility can be calculated. Alternatively, the compressibility factor for specific gases can be read from generalized compressibility charts [ 1 ] that plot Z {\displaystyle Z} as a function of pressure at ...

  6. Amagat's law - Wikipedia

    en.wikipedia.org/wiki/Amagat's_law

    Their predictions are the same for ideal gases. However, for real (non-ideal) gases, the results differ. [3] Dalton's law of partial pressures assumes that the gases in the mixture are non-interacting (with each other) and each gas independently applies its own pressure, the sum of which is the total pressure.

  7. Avogadro's law - Wikipedia

    en.wikipedia.org/wiki/Avogadro's_Law

    Avogadro's law (sometimes referred to as Avogadro's hypothesis or Avogadro's principle) or Avogadro-Ampère's hypothesis is an experimental gas law relating the volume of a gas to the amount of substance of gas present. [1] The law is a specific case of the ideal gas law. A modern statement is:

  8. Theorem of corresponding states - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_corresponding...

    It predicts a value of / = that is found to be an overestimate when compared to real gases. Edward A. Guggenheim used the phrase "Principle of Corresponding States" in an opt-cited paper to describe the phenomenon where different systems have very similar behaviors when near a critical point. [4]

  9. Van der Waals constants (data page) - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_constants...

    The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.