Search results
Results from the WOW.Com Content Network
The degree sequence of an undirected graph is the non-increasing sequence of its vertex degrees; [5] for the above graph it is (5, 3, 3, 2, 2, 1, 0). The degree sequence is a graph invariant, so isomorphic graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a graph; in some cases, non ...
The degree sequence of a directed graph is the list of its indegree and outdegree pairs; for the above example we have degree sequence ((2, 0), (2, 2), (0, 2), (1, 1)). The degree sequence is a directed graph invariant so isomorphic directed graphs have the same degree sequence.
The degree of a node in a network (sometimes referred to incorrectly as the connectivity) is the number of connections or edges the node has to other nodes. If a network is directed, meaning that edges point in one direction from one node to another node, then nodes have two different degrees, the in-degree, which is the number of incoming edges, and the out-degree, which is the number of ...
A directed graph has an Eulerian trail if and only if at most one vertex has − = 1, at most one vertex has (in-degree) − (out-degree) = 1, every other vertex has equal in-degree and out-degree, and all of its vertices with nonzero degree belong to a single connected component of the underlying undirected graph. [6]
In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]
Multi-edge graphs: Graphs allowing multiple edges between the same pair of nodes. Loopy graphs: Graphs that include self-loops (edges connecting a node to itself). Directed graphs: Models with specified in-degrees and out-degrees for each node. Undirected graphs: Models that consider the total degree of each node.
In directed graphs, another form of the degree-sum formula states that the sum of in-degrees of all vertices, and the sum of out-degrees, both equal the number of edges. Here, the in-degree is the number of incoming edges, and the out-degree is the number of outgoing edges. [7]
For an undirected graph, this means that the graph is connected and every vertex has even degree. For a directed graph, this means that the graph is strongly connected and every vertex has in-degree equal to the out-degree. In some cases, the connectivity requirement is loosened, and a graph meeting only the degree requirements is called Eulerian.