Search results
Results from the WOW.Com Content Network
The purpose of overclocking is to increase the operating speed of a given component. [3] Normally, on modern systems, the target of overclocking is increasing the performance of a major chip or subsystem, such as the main processor or graphics controller, but other components, such as system memory or system buses (generally on the motherboard), are commonly involved.
A memory divider is a ratio which is used to determine the operating clock frequency of computer memory in accordance with front side bus (FSB) frequency, if the memory system is dependent on FSB clock speed. Along with memory latency timings, memory dividers are extensively used in overclocking memory subsystems to find stable, working memory ...
Overclocking is the process of forcing your computer to run faster than it's intended to go, which can help you run advanced programs on an older PC.
When translating memory timings into actual latency, it is important to note that timings are in units of clock cycles, which for double data rate memory is half the speed of the commonly quoted transfer rate. Without knowing the clock frequency it is impossible to state if one set of timings is "faster" than another.
In contrast with standard SDRAM, used in stationary devices and laptops and usually connected over a 64-bit wide memory bus, LPDDR also permits 16- or 32-bit wide channels. [2] The "E" and "X" versions mark enhanced versions of the specifications. They formalize overclocking the memory array by usually 33%.
For instance, under a 1,066MHz FSB, the only choices regarding memory speed in the MRC are DDR2-667 and DDR2-800. We have to provide additional choices. For people who want higher memory frequency, we used the setting of 800MHz FSB:DDR2-800 in MRC, but overclocked it to work with a 1,066MHz FSB, so we could implement support for DDR2-1066.
The DDR4 SDRAM is a high-speed dynamic random-access memory internally configured as 16 banks, 4 bank groups with 4 banks for each bank group for ×4/×8 and 8 banks, 2 bank groups with 4 banks for each bank group for ×16 DRAM. The DDR4 SDRAM uses an 8n prefetch architecture to achieve high-speed
With Sandy Bridge, Intel has tied the speed of every bus (USB, SATA, PCI, PCIe, CPU cores, Uncore, memory etc.) to a single internal clock generator issuing the basic 100 MHz Base Clock (BClk). [44] With CPUs being multiplier locked, the only way to overclock is to increase the BClk, which can be raised by only 5–7% without other hardware ...