enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Karplus equation - Wikipedia

    en.wikipedia.org/wiki/Karplus_equation

    where J is the 3 J coupling constant, is the dihedral angle, and A, B, and C are empirically derived parameters whose values depend on the atoms and substituents involved. [3] The relationship may be expressed in a variety of equivalent ways e.g. involving cos 2φ rather than cos 2 φ —these lead to different numerical values of A , B , and C ...

  3. J-coupling - Wikipedia

    en.wikipedia.org/wiki/J-coupling

    Example 1 H NMR spectrum (1-dimensional) of ethanol plotted as signal intensity vs. chemical shift.There are three different types of H atoms in ethanol regarding NMR. The hydrogen (H) on the −OH group is not coupling with the other H atoms and appears as a singlet, but the CH 3 − and the −CH 2 − hydrogens are coupling with each other, resulting in a triplet and quartet respectively.

  4. Coupling constant - Wikipedia

    en.wikipedia.org/wiki/Coupling_constant

    The coupling constant determines the magnitude of the part with respect to the part (or between two sectors of the interaction part if several fields that couple differently are present). For example, the electric charge of a particle is a coupling constant that characterizes an interaction with two charge-carrying fields and one photon field ...

  5. Magnetic inequivalence - Wikipedia

    en.wikipedia.org/wiki/Magnetic_inequivalence

    The coupling constants then differ because of geometry (cis vs. trans) or connectivity (2-bond vs. 3-bond) and the level of complexity will depend on the differences. Conformational dynamics may reduce or even obliterate the difference between cis and trans couplings, if fast compared to the NMR timescale. There may also be additional couplings ...

  6. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    Coupling constants for these protons are often as large as 200 Hz, for example, in diethylphosphine, where the 1J P−H coupling constant is 190 Hz. [6] These coupling constants are so large that they may span distances in excess of 1 ppm (depending on the spectrometer), making them prone to overlapping with other proton signals in the molecule.

  7. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not zero, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  8. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    While 1D NMR is more straightforward and ideal for identifying basic structural features, COSY enhances the capabilities of NMR by providing deeper insights into molecular connectivity. The two-dimensional spectrum that results from the COSY experiment shows the frequencies for a single isotope, most commonly hydrogen (1 H) along both axes.

  9. Magnetic dipole–dipole interaction - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dipole–dipole...

    For example, in water, NMR spectra of hydrogen atoms of water molecules are narrow lines because dipole coupling is averaged due to chaotic molecular motion. [1] In solids, where water molecules are fixed in their positions and do not participate in the diffusion mobility, the corresponding NMR spectra have the form of the Pake doublet. In ...