Search results
Results from the WOW.Com Content Network
The curve of the chains of a suspension bridge is always an intermediate curve between a parabola and a catenary, but in practice the curve is generally nearer to a parabola due to the weight of the load (i.e. the road) being much larger than the cables themselves, and in calculations the second-degree polynomial formula of a parabola is used.
The butterfly curve can be defined by parametric equations of x and y.. In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, as functions of one or several variables called parameters.
Let each curve C t in the family be given as the solution of an equation f t (x, y)=0 (see implicit curve), where t is a parameter. Write F(t, x, y)=f t (x, y) and assume F is differentiable. The envelope of the family C t is then defined as the set of points (x,y) for which, simultaneously,
A Bézier curve is defined by a set of control points P 0 through P n, where n is called the order of the curve (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.). The first and last control points are always the endpoints of the curve; however, the intermediate control points generally do not lie on the curve.
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature.For a curve, it equals the radius of the circular arc which best approximates the curve at that point.
While a parabolic arch may resemble a catenary arch, a parabola is a quadratic function while a catenary is the hyperbolic cosine, cosh(x), a sum of two exponential functions. One parabola is f(x) = x 2 + 3x − 1, and hyperbolic cosine is cosh(x) = e x + e −x / 2 . The curves are unrelated.
For a curve C given by a sufficiently smooth parametric equations (twice continuously differentiable), the osculating circle may be obtained by a limiting procedure: it is the limit of the circles passing through three distinct points on C as these points approach P. [3]
It can also be defined as a curve whose points are at a constant normal distance from a given curve. [1] These two definitions are not entirely equivalent as the latter assumes smoothness, whereas the former does not. [2] In computer-aided design the preferred term for a parallel curve is offset curve.