Search results
Results from the WOW.Com Content Network
Its Euler characteristic is 0, by the product property. More generally, any compact parallelizable manifold, including any compact Lie group, has Euler characteristic 0. [12] The Euler characteristic of any closed odd-dimensional manifold is also 0. [13] The case for orientable examples is a corollary of Poincaré duality.
Let ρ be the negative of the Euler characteristic (so that ρ = 2m − 2 for the sphere with m holes). Then {(),} (), This is meaningful only when ρ(Y) > 0, for example when Y is a sphere with three (or more) holes. In this case, the result can be considered as a generalization of the property b) of coverings.
Thus the Euler class is a generalization of the Euler characteristic to vector bundles other than tangent bundles. In turn, the Euler class is the archetype for other characteristic classes of vector bundles, in that each "top" characteristic class equals the Euler class, as follows. Modding out by 2 induces a map
The p-hosohedron is a regular map of type {2,p}. The Dyck map is a regular map of 12 octagons on a genus-3 surface. Its underlying graph, the Dyck graph, can also form a regular map of 16 hexagons in a torus. The following is a complete list of regular maps in surfaces of positive Euler characteristic, χ: the sphere and the projective plane. [2]
Thus 2 is a topological invariant of the sphere, called its Euler characteristic. On the other hand, a torus can be sliced open by its 'parallel' and 'meridian' circles, creating a map with V = 1 vertex, E = 2 edges, and F = 1 face. Thus the Euler characteristic of the torus is 1 − 2 + 1 = 0.
In calculating the Euler characteristic of S′ we notice the loss of e P − 1 copies of P above π(P) (that is, in the inverse image of π(P)). Now let us choose triangulations of S and S′ with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics.
Then use the fact that the degree of a map from the boundary of an n-dimensional manifold to an (n–1)-dimensional sphere, that can be extended to the whole n-dimensional manifold, is zero. [citation needed] Finally, identify this sum of indices as the Euler characteristic of M.
Then one notes that, in general, the Lefschetz number can also be computed using the alternating sum of the matrix traces of the aforementioned linear maps (this is true for almost exactly the same reason that the Euler characteristic has a definition in terms of homology groups; see below for the relation to the Euler characteristic). In the ...