Search results
Results from the WOW.Com Content Network
Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3] He calls it "a theoretical rectification formula giving the maximum rectification", with a footnote referencing a paper by Carl Wagner , Physikalische Zeitschrift 32 , pp ...
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
The Shockley ideal diode equation or the diode law (named after the bipolar junction transistor co-inventor William Bradford Shockley) models the exponential current–voltage (I–V) relationship of diodes in moderate forward or reverse bias. The article Shockley diode equation provides details.
The simplest I–V curve is that of a resistor, which according to Ohm's law exhibits a linear relationship between the applied voltage and the resulting electric current; the current is proportional to the voltage, so the I–V curve is a straight line through the origin with positive slope. The reciprocal of the slope is equal to the resistance.
The transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this formula is rarely used in network analysis, a piecewise approximation being used instead. It can be seen that the diode current rapidly diminishes to -I o as the voltage falls. This current, for most purposes, is so small it can be ignored.
In low voltage converters (around 10 volts and less), the voltage drop of a diode (typically around 0.7 to 1 volt for a silicon diode at its rated current) has an adverse effect on efficiency. One classic solution replaces standard silicon diodes with Schottky diodes , which exhibit very low voltage drops (as low as 0.3 volts).
Connecting the p-type region to the negative terminal of the voltage supply and the n-type region to the positive terminal corresponds to reverse bias. If a diode is reverse-biased, the voltage at the cathode is comparatively higher than at the anode. Therefore, very little current flows until the diode breaks down.
An ideal current source generates a current that is independent of the voltage changes across it. An ideal current source is a mathematical model, which real devices can approach very closely. If the current through an ideal current source can be specified independently of any other variable in a circuit, it is called an independent current source.