enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. [1] In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.

  3. Activity selection problem - Wikipedia

    en.wikipedia.org/wiki/Activity_selection_problem

    Once the greedy choice is made, the problem reduces to finding an optimal solution for the subproblem. If A is an optimal solution to the original problem S containing the greedy choice, then A ′ = A ∖ { 1 } {\displaystyle A^{\prime }=A\setminus \{1\}} is an optimal solution to the activity-selection problem S ′ = { i ∈ S : s i ≥ f 1 ...

  4. Optimal substructure - Wikipedia

    en.wikipedia.org/wiki/Optimal_substructure

    Typically, a greedy algorithm is used to solve a problem with optimal substructure if it can be proven by induction that this is optimal at each step. [1] Otherwise, provided the problem exhibits overlapping subproblems as well, divide-and-conquer methods or dynamic programming may be used. If there are no appropriate greedy algorithms and the ...

  5. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.

  6. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    A 1999 study of the Stony Brook University Algorithm Repository showed that, out of 75 algorithmic problems related to the field of combinatorial algorithms and algorithm engineering, the knapsack problem was the 19th most popular and the third most needed after suffix trees and the bin packing problem.

  7. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    This algorithm may yield a non-optimal solution. For example, suppose there are two tasks and two agents with costs as follows: Alice: Task 1 = 1, Task 2 = 2. George: Task 1 = 5, Task 2 = 8. The greedy algorithm would assign Task 1 to Alice and Task 2 to George, for a total cost of 9; but the reverse assignment has a total cost of 7.

  8. Set cover problem - Wikipedia

    en.wikipedia.org/wiki/Set_cover_problem

    There is a greedy algorithm for polynomial time approximation of set covering that chooses sets according to one rule: at each stage, choose the set that contains the largest number of uncovered elements. This method can be implemented in time linear in the sum of sizes of the input sets, using a bucket queue to prioritize the sets. [6]

  9. Greedy randomized adaptive search procedure - Wikipedia

    en.wikipedia.org/wiki/Greedy_randomized_adaptive...

    The greedy randomized adaptive search procedure (also known as GRASP) is a metaheuristic algorithm commonly applied to combinatorial optimization problems. GRASP typically consists of iterations made up from successive constructions of a greedy randomized solution and subsequent iterative improvements of it through a local search . [ 1 ]