Search results
Results from the WOW.Com Content Network
In graph theory, a branch of mathematics, a split graph is a graph in which the vertices can be partitioned into a clique and an independent set. Split graphs were first studied by Földes and Hammer ( 1977a , 1977b ), and independently introduced by Tyshkevich and Chernyak ( 1979 ), where they called these graphs "polar graphs" ( Russian ...
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {(u, v) ∈ E | u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the graph G, then an s – t cut is a cut in which s belongs to the set S and t ...
The subset of edges that have one endpoint in each side is called a cut-set. When a cut-set forms a complete bipartite graph, its cut is called a split. Thus, a split can be described as a partition of the vertices of the graph into two subsets X and Y, such that every neighbor of X in Y is adjacent to every neighbor of Y in X. [2]
When modelling relations between two different classes of objects, bipartite graphs very often arise naturally. For instance, a graph of football players and clubs, with an edge between a player and a club if the player has played for that club, is a natural example of an affiliation network, a type of bipartite graph used in social network analysis.
If D is the set of cards in a standard 52-card deck, the same-color-as relation on D – which can be denoted ~ C – has two equivalence classes: the sets {red cards} and {black cards}. The 2-part partition corresponding to ~ C has a refinement that yields the same-suit-as relation ~ S , which has the four equivalence classes {spades ...
Suppose some data points, each belonging to one of two sets, are given and we wish to create a model that will decide which set a new data point will be in. In the case of support vector machines , a data point is viewed as a p -dimensional vector (a list of p numbers), and we want to know whether we can separate such points with a ( p − 1 ...
For many problems, relaxing the equality of split variables allows the system to be broken down, enabling each subsystem to be solved separately. This significantly reduces computation time and memory usage. Solving the relaxed problem with variable splitting can give an approximate solution to the initial problem.