enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. John M. Lee - Wikipedia

    en.wikipedia.org/wiki/John_M._Lee

    Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.

  3. Poisson manifold - Wikipedia

    en.wikipedia.org/wiki/Poisson_manifold

    The modular class of a Poisson manifold is a class in the first Poisson cohomology group: for orientable manifolds, it is the obstruction to the existence of a volume form invariant under the Hamiltonian flows. [26] It was introduced by Koszul [27] and Weinstein. [28]

  4. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity.

  5. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    Important to applications in mathematics and physics [1] is the notion of a flow on a manifold. In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to .

  6. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    It is known that for manifolds of dimension 4 and higher, no program exists that can decide whether two manifolds are diffeomorphic. Smooth manifolds have a rich set of invariants, coming from point-set topology, classic algebraic topology, and geometric topology.

  7. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Category:Smooth manifolds - Wikipedia

    en.wikipedia.org/wiki/Category:Smooth_manifolds

    This page was last edited on 4 February 2012, at 16:45 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.