enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).

  3. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    An object resting on a surface and the corresponding free body diagram showing the forces acting on the object. The normal force N is equal, opposite, and collinear to the gravitational force mg so the net force and moment is zero. Consequently, the object is in a state of static mechanical equilibrium.

  4. Statically indeterminate - Wikipedia

    en.wikipedia.org/wiki/Statically_indeterminate

    The structure has no possible states of self-stress, i.e. internal forces in equilibrium with zero external loads are not possible. Statical indeterminacy, however, is the existence of a non-trivial (non-zero) solution to the homogeneous system of equilibrium equations. It indicates the possibility of self-stress (stress in the absence of an ...

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For example, a free body diagram of a block sitting upon an inclined plane can illustrate the combination of gravitational force, "normal" force, friction, and string tension. [note 4] Newton's second law is sometimes presented as a definition of force, i.e., a force is that which exists when an inertial observer sees a body accelerating.

  6. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.

  7. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    Free body diagrams of a block on a flat surface and an inclined plane. Forces are resolved and added together to determine their magnitudes and the net force. Free-body diagrams can be used as a convenient way to keep track of forces acting on a system.

  8. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The Third Law requires that for a structure to be stable all the internal and external forces must be in equilibrium. This means that the sum of all internal and external forces on a free-body diagram must be zero: =: the vectorial sum of the forces acting on the body equals zero. This translates to

  9. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    The free body diagrams of the two hanging masses of the Atwood machine. Our sign convention, depicted by the acceleration vectors is that m 1 accelerates downward and that m 2 accelerates upward, as would be the case if m 1 > m 2. An equation for the acceleration can be derived by analyzing forces.