Search results
Results from the WOW.Com Content Network
Phenolphthalein is slightly soluble in water and usually is dissolved in alcohols in experiments. It is a weak acid, which can lose H + ions in solution. The nonionized phenolphthalein molecule is colorless and the double deprotonated phenolphthalein ion is fuchsia. Further proton loss in higher pH occurs slowly and leads to a colorless form.
Strange matter: A type of quark matter that may exist inside some neutron stars close to the Tolman–Oppenheimer–Volkoff limit (approximately 2–3 solar masses). May be stable at lower energy states once formed. Quark matter: Hypothetical phases of matter whose degrees of freedom include quarks and gluons Color-glass condensate
Phenols are more acidic than typical alcohols. The acidity of the hydroxyl group in phenols is commonly intermediate between that of aliphatic alcohols and carboxylic acids (their pK a is usually between 10 and 12).
In regular cold matter, quarks, fundamental particles of nuclear matter, are confined by the strong force into hadrons that consist of 2–4 quarks, such as protons and neutrons. Quark matter or quantum chromodynamical (QCD) matter is a group of phases where the strong force is overcome and quarks are deconfined and free to move.
Examples of mesons include the pion, kaon, and the J/ψ. In quantum hadrodynamics , mesons mediate the residual strong force between nucleons. At one time or another, positive signatures have been reported for all of the following exotic mesons but their existences have yet to be confirmed.
Concentrated or strong bases are caustic on organic matter and react violently with acidic substances. Aqueous solutions or molten bases dissociate in ions and conduct electricity. Reactions with indicators: bases turn red litmus paper blue, phenolphthalein pink, keep bromothymol blue in its natural colour of blue, and turn methyl orange-yellow.
At still higher pH (pK a = 7.7), the phenol's hydroxy group loses its proton, resulting in the red ion denoted as PS 2−. [6] In several sources, the structure of phenol red is shown with the sulfur atom being part of a cyclic group, similar to the structure of phenolphthalein.
Natural phenols are reactive species toward oxidation, notably the complex mixture of phenolics, found in food for example, can undergo autoxidation during the ageing process. Simple natural phenols can lead to the formation of B type proanthocyanidins in wines [17] or in model solutions.