Search results
Results from the WOW.Com Content Network
The Britten–Davidson model, [1] [2] also known as the gene-battery model, [3] is a hypothesis for the regulation of protein synthesis in eukaryotes.Proposed by Roy John Britten and Eric H. Davidson in 1969, the model postulates four classes of DNA sequence: an integrator gene, a producer gene, a receptor site, and a sensor site.
Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental ...
The structure of a eukaryotic protein-coding gene. Regulatory sequence controls when and where expression occurs for the protein coding region (red). Promoter and enhancer regions (yellow) regulate the transcription of the gene into a pre-mRNA which is modified to remove introns (light grey) and add a 5' cap and poly-A tail (dark grey).
Regulation of gene expression is the control of the amount and timing of appearance of the functional product of a gene. Control of expression is vital to allow a cell to produce the gene products it needs when it needs them; in turn, this gives cells the flexibility to adapt to a variable environment, external signals, damage to the cell, and ...
Eukaryotes have a much larger genome and thus have different methods of gene regulation than in prokaryotes. All cells in a eukaryotic organism have the same DNA but are specified through differential gene expression, a phenomenon known as genetic totipotency. [7]
In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is ...
Structure of a gene regulatory network Control process of a gene regulatory network. A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins which, in turn, determine the function of the cell.
The TATA box is the binding site of the TATA-binding protein (TBP) and other transcription factors in some eukaryotic genes. Gene transcription by RNA polymerase II depends on the regulation of the core promoter by long-range regulatory elements such as enhancers and silencers. [5]